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Abstract. A new derivation of the Green-Naghdi (GN) equations for ‘sheet-like’ flows is made by use of the
principle of virtual work. Divergence-free virtual displacements are used to formulate the momentum equations
weakly. This results in the elimination of the internal pressure from the GN equations. As is well-known in particle
dynamics, the principle of virtual work can be integrated to obtain Hamilton’s principle. These integrations can
be performed in a straightforward manner when the Lagrangian description of fluid motion is adopted. When
Hamilton’s principle is written in an Eulerian reference frame, terms must be added to the Lagrangian to impose
the Lin constraint to account for the difference between the Lagrangian and Eulerian variables (Lin). If, however,
the Lin constraint is omitted, the scope of Hamilton’s principle is confined to irrotational flows (Bretherton). This
restricted Hamilton’s principle is used to derive the new GN equations for irrotational flows with the same kine-
matic approximation as in the original derivation of the GN equations. The resulting new hierarchy of governing
equations for irrotational flows (referred to herein as the IGN equations) has a considerably simpler structure than
the corresponding hierarchy of the original GN governing equations that were not limited to irrotational flows.
Finally, it will be shown that the conservation of both the in-sheet and cross-sheet circulation is satisfied more
strongly by the IGN equations than by the original GN equations.
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1. Introduction

Since the discovery of solitary waves by Russell [1] there has been an increasing number
of theories each using different approaches to predict the evolution of long nonlinear waves.
Long waves can be considered a subset of more general sheet-like or ‘thin’ flows where one
characteristic dimension of the physical problem is considerably smaller than the other two
in a three-dimensional space. There are basically three major approaches to the derivation of
long-wave equations.

In the classical approach, conservation of mass and conservation of linear momentum
equations form the equations of motion for all fluid particles throughout the continuum. These
equations (Navier–Stokes) are approximated by use of several basic assumptions such as the
inviscid-fluid and irrotational-flow assumptions. At this point two major scales, namely the
dominant-length scale and the dominant-amplitude scale, are introduced. These scales or
perturbation parameters are then introduced into approximate equations of motion and into
the solid- and free-surface boundary conditions. The velocities and the free-surface elevation,
both being unknown, are expanded into a perturbation series ordered in terms of the above
scales. Then, one decides which terms in this expansion are retained and which ones are
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discarded, depending on various factors such as the importance of nonlinearity and dispersion,
and even factors such as computational difficulty. The ordered terms collected in the equations
of motion and the boundary conditions then result in the desired governing equations for
long waves. We note, however, that there are slight variations to this approach, such as the
introduction of a depth-averaging process at the outset for the horizontal components of the
particle velocity vector. Several well-known shallow-water wave equations, such as the ones
by Boussinesq [2] and Korteweg and de Vries [3], and several of their variations follow this
classical approach.

Another approach to deriving the long-wave equations is by use of a variational principle,
particularly Luke’s [4] variational principle. In this method, Euler’s Integral is used as the
Lagrangian density and several classical equations may be obtained in this way (see Whitham
[5]).

In the early 1970s, a new approach to the development of nonlinear long-wave equa-
tions was established by A.E. Green of the University of Oxford and Paul M. Naghdi of
the University of California at Berkeley. This approach has its roots in the theory of shells
and plates in structural mechanics, and is based on a three-dimensional continuum model
called aCosseratsurface. ACosserator directed surface is a surface embedded in a three-
dimensional Eucledian space with fields of deformable vectors, called ‘directors’, assigned
to every point of this surface. The two-dimensional surface along with theK ≥ 1 directors
model the body of fluid as a deformable medium in a three-dimensional space. In this theory,
called the theory of directed fluid sheets [7], the conservation of mass, linear momentum and
director momentum are postulated. The essential relations between the stresses and strains
given by the constitutive equations are obtained in the form of inertia coefficients for the
two-dimensionalCosseratsurfaces by referring to the three-dimensional equations which are
exact. This approach, called the direct approach, then results in a set of nonlinear partial
differential equations for the continuum being studied. The general theory does not make the
assumption that the fluid is inviscid or that the flow is irrotational, but the fluid is assumed to
be incompressible (see,e.g., [8]).

The same system of resulting governing equations for wave propagation in water of vari-
able depth, which were named ‘the Green-Naghdi equations’ by Ertekin [9], may also be
derived from the three-dimensional equations of fluid dynamics in a number of different,
but closely related ways. One of the ways is to begin the derivation with the continuity
and conservation-of-energy equations in a three-dimensional theory as was done by Green
and Naghdi [10]. Then these two statements are specialized to a fluid sheet whose attached
directors always remain parallel to the vertical coordinate (this is called the ‘restricted’ theory)
at LevelK = 1. This assumption, being the only one with regard to the kinematics of the
flow field, is certainly a special case of the more general theory of directed fluid sheets. The
single director used, in fact, is equivalent to assuming that the horizontal components of the
fluid particle velocity are constant and the vertical component varies linearly across the fluid
sheet. Then the exact free-surface and solid-boundary conditions are imposed on the integrated
conservation equations to obtain a set of nonlinear and time-dependent partial differential
equations which also allow a time-dependent sea-floor boundary.

More recently, Shields [11] and Shields and Webster [12] have derived the same equations
given by Green and Naghdi [8] by following a different point of view. This set of equations,
valid for any number of directors, is obtained from the three-dimensional equations of motion
by use of the Kantorovich [13, Chapter IV] method which prescribes the form of the kinemat-
ics of the flow in one coordinate direction (here the vertical coordinate), while allowing the
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solution to vary freely in the other two directions (here the horizontal coordinates). A similar
method has been used by Levich and Krylov [14] in their derivation of a set of film-flow
equations.

It has been observed that there are similarities between the development of the finite-
element method and the Green-Naghdi equations. Kim and Bai [15], for example, found
that the finite-element method, based on Hamilton’s principle and written in terms of the
stream function, gives results very similar to the ones obtained by the GN equations. When
they used one linear element in the depthwise direction, they could obtain the same analytical
solitary-wave solution produced by the Level I GN equations. Later, Bai and Kim [16] showed
that their finite-element solution produces the same dispersion relation that satisfies the GN
equations if the same kinematic approximations are used and the wave amplitude is very small,
i.e., if the equations are linearized.

Regardless of what approach is taken within the context of the theory of directed fluid
sheets described above, one arrives at equations that satisfy the exact boundary conditions
and the exact integrated conservation laws. Furthermore, the equations obtained are invariant
under a constant superposed rigid-body translation of the whole fluid,i.e. they are Galilean
invariant, as shown by Green and Naghdi [17].

Part of the present work is an extension to any LevelK of Miles and Salmon’s [18] work,
who derived the Level I GN equations from Hamilton’s principle. They showed that both
the Lagrangian and Eulerian descriptions result in the Level I GN equations. In the higher-
level approximation of the GN equations, Hamilton’s principle via the Lagrangian description
may not be so useful, since it is difficult to convert the results to Eulerian variables. Instead,
we introduce the principle of virtual work which is equivalent to Hamilton’s principle for
an inviscid fluid. An advantage of using the principle of virtual work is that it can easily be
extended to viscous flows, something that is not possible by use of Hamilton’s principle. On
the other hand, when we use Hamilton’s principle in the Eulerian description, we restrict the
scope of the principle to irrotational flows by omitting the Lin constraint terms (see Lin [23]),
following Miles and Salmon [18].

When we apply the above mentioned variational principles to a sheet of inviscid fluid, we
obtain the GN and IGN equations. The principle of virtual work provides the GN equations of
any LevelK. In this principle, the internal pressure is eliminated through the weak formula-
tion, which employs the divergence-free virtual displacements. Hamilton’s principle applied
in an Eulerian description gives a new hierarchy of approximate equations, the IGN equations,
which have a considerably simpler structure than the original GN equations.

The derivations of the variational principle and the corresponding approximate equations
are achieved by use of the divergence-free velocity and displacement fields to satisfy the
continuity equationa priori. The divergence-free field, sayv, can be given in terms of a vector
stream function9(x1, x2, x3, t) = (91,92,93) as

v = ∇ ×9.
Without loss of generality for sheet-like flows, we can omit the third component,93, of

9 by setting it equal to zero. As a result, the variational formulations are given in terms
of 9, which has one less component than the original vector functionv. As a consequence
of using these divergence-free velocity fields, the results of the variational principles are
slightly different from Euler’s equations which have been the starting point of former uses
of variational principles.
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Figure 1. Definition sketch.

The principle of virtual work and Hamilton’s principle in a Lagrangian description result
equivalently in the vorticity-transport equations. In the case of Hamilton’s principle in an
Eulerian reference frame, we can obtain the irrotationality condition:∇×v = 0. The vorticity-
transport equations and the irrotationality equations are weakly satisfied in the approximate
equations. The weak conservation of circulation obtained by Shields and Webster [19] is
derived directly from approximate vorticity-transport equations.

2. Statement of the problem

In the following, we shall employ the standard Cartesian-tensor notation, with the summation
convention implied for repeated indices. Latin indices indicate quantities having three spatial
components and they take the values 1, 2 or 3; Greek indices take the values 1 or 2 only.

Let (x1, x2, x3) be a right-handed system of fixed, rectangular Cartesian coordinates with
base vectorse1,e2 ande3, where positivee3 is oriented vertically upwards. With reference to
Figure 1, we consider the motion of a sheet-like body of incompressible and inviscid fluid in
a gravitational field−ge3 . The fluid domain� is assumed to be bounded from above and
below by two smooth, non-intersecting, time-varying material surfaces:

x3 = α(x1, x2, t), x3 = β(x1, x2, t), β > α. (2.1)

The local thicknessη and the mid-surface locationζ can be defined by

η(x1, x2, t) = β − α, ζ(x1, x2, t) = 1
2(β + α). (2.2)

The equations of motion for the inviscid-fluid body are the continuity equation and Euler’s
equations:

vi,i = 0, (2.3)

v,t + viv,i = −1

ρ
p,iei − ge3, (2.4)
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respectively, wherev = vi(x1, x2, x3, t)ei andp(x1, x2, x3, t) are the velocity vector and
pressure defined in the fluid domain�, respectively.

In the absence of surface tension, the principal of equivalence of external and internal
pressures on the surfacesα andβ yields the dynamic boundary conditions on these surfaces:

p|x3=β = p̂, p|x3=α = p̄, (2.5)

wherep̂ and p̄ are the pressures acting on the upper and lower surfaces of the fluid sheet,
respectively. Hereafter, we shall use the notationˆ (hat) and̄ (bar) over a variable to represent
the values of a function evaluated onx3 = β and onx3 = α, respectively. The kinematic
boundary conditions follow from the hypothesis thatα andβ are material surfaces, which
imposes the constraint that the normal velocities of the particles on the surfaces are identical
to those of the normal velocities of the surfaces themselves. Thus,[

v3− β,t − vγ β,γ
]
x3=β = 0, (2.6)[

v3− α,t − vγ α,γ
]
x3=α = 0. (2.7)

We complete the problem statement by enforcing the additional boundary conditions on the
vertical control surfaceSW , closing the domain (see Figure 1). We assume that the normal
velocity is specified on this vertical control surface.

3. GN equations (direct method)

Shields and Webster [12] derived the GN equations following the variational method of Kan-
torovich (also referred to as ‘direct method’) (see, for example, Kantorovich and Krylov [13,
Chapter IV]). In their derivation, they assumed an approximate velocity field in the vertical
direction while satisfying the continuity equation and the kinematic boundary conditions ex-
actly; on the other hand, Euler’s equations were weakly formulated. We recall their results for
later comparison with the developments in this paper.

For convenience, a transformed coordinates is adopted:

s(x1, x2, x3, t) = 2

η

(
x3− ζ ) . (3.1)

As defined, the functions maps the fluid domain to a region between two parallel planes in
the coordinate system(x1, x2, s), given by|s| ≤ 1. In particular, the upper surface of the fluid
is mapped tos = +1, the lower surface is mapped tos = −1, and the midsurface is mapped
to s = 0. The velocity field is assumed to have the following polynomial expansion of order
K:

v(x1, x2, x3, t) =
K∑
n=0

wn(x
1, x2, t)sn, (3.2)

where

wn(x
1, x2, t) = win(x1, x2, t)ei , n = 0,1, . . . , K − 1, (3.3a)

wK(x
1, x2, t) = w3

K(x
1, x2, t)e3. (3.3b)
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Then the continuity equation (2.3) and the kinematic boundary conditions (2.6) and (2.7) are
given as follows.

Continuity equation:

ζ,γw
γ
n +

1

2
η,γw

γ

n−1− w3
n =

1

2n

(
ηw

γ

n−1

)
,γ
, n = 1,2, . . . , K. (3.4)

Kinematic boundary conditions:

2
K∑

n=1,3,...

w3
n = η,t + η,γ

K−1∑
n=0,2,...

wγn + 2ζ,γ
K−1∑

n=1,3,...

wγn , (3.5)

and

2
K∑

n=0,2,...

w3
n = 2ζ,t + η,γ

K−1∑
n=1,3,...

wγn + 2ζ,γ
K−1∑

n=0,2,...

wγn , (3.6)

where the summations are over even or odd indices, as indicated.
It should be noted that the above kinematic constraints are exactly satisfied as given. We

satisfy the momentum equations (2.4) weakly by use of the powers ofs as the test functions.
To do that, one can integrate (2.4) overs, after multiplying it bysm,m = 0,1, . . . , K − 1:

η

2

∫ 1

−1
sm

Dv
Dt

ds =
K∑
n=0

[
ηθm+n

(
wn,t + wγ0 wn,γ

)
+
K−1∑
r=1

θm+n+r
{
ηwγr wn,γ + nµrm+n

(
ηwγr

)
,λ

wn

}]

= −1

ρ

{
pm,γ +mpmη,γ

η
− 2mpm−1

ζ,γ

η
− p̂β,γ + (−1)mp̄α,γ

}
eγ

−1

ρ

{
p̂ − (−1)mp̄ − 2mpm−1

η
+ ρgηθm

}
e3,

(3.7)

and one can integrate the vertical component of (2.4) overs, after multiplying it bysK :

η

2

∫ 1

−1
sK

Dv3

Dt
ds =

K∑
n=0

[
ηθK+n

(
w3
n,t + wγ0w3

n,γ

)+
+
K−1∑
r=1

θK+n+r
{
ηwγr w

3
n,γ + nµrK+n

(
ηwγr

)
,γ
w3
n

}]

= −1

ρ

{
p̂ − (−1)Kp̄ − 2KpK−1

η
+ ρgηθK

}
e3,

(3.8)

where

D·
Dt
= ∂·
∂t
+ vi ∂·

∂xi

is defined as the material derivative, and
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θn =
{

1/(n+ 1), n even,

0, n odd,
(3.9)

µrn =
{

1/n, r odd,

r/{(r + 1)(n+ 1)}, r even,
(3.10)

pn = (η/2)
∫ 1

−1
snp ds. (3.11)

In the applications of the theory (e.g., [9], [12] and [20]); Shields and Webster [12]),
the GN equations are reduced by elimination of the pressure integralspn and the verti-
cal velocity componentsw3

n. The results can be given as partial differential equations for{
ζ, η,w

γ
n , n = 0, . . . , K − 1

}
. In the past, the reduction of the GN equations has been done

separately at each level of approximation and forK ≤ 3. However, it has not been known that
the elimination of the pressure integrals are possible at any level of approximation. We shall
show that this is always possible by using the principle of virtual work in the next section.

4. GN equations (principle of virtual work)

4.1. STATEMENT OF THE PRINCIPLE

In the formulation of the GN equations given by (3.4)–(3.8), the assumed solution (3.2) and the
test functions,sn, are taken without any further restriction. We shall next impose a restriction
on the test functions before the weak formulation is made.

We consider the velocity and displacement fields that satisfy the continuity equation in�

and the vanishing normal virtual displacement field onSW :

vi,i = 0, δXi
,i = 0, in �, (4.1a)

δXini = 0, on SW, (4.1b)

where δXi is the virtual displacement that will be used here as the test function. Equa-
tion (4.1b) states that the normal component of the virtual displacement is assumed to be
zero on the vertical control surfaceSW where the normal velocity is specified. The virtual
work done by the virtual displacementδX(x1, x2, x3, t) = δXiei can be written as

δW =
∫
�

δX · {ρ (v,t + viv,i)+ p,iei + ρge3
}

dV = 0. (4.2)

The virtual work due to the pressure and gravitational terms can be obtained as∫
�

δXi(p + ρgx3),idV =
∫
∂�

δXini(p + ρgx3) dS

=
∫∫

∂�

(
δX3− β,γ δXγ

)
x3=β (p̂ + ρgβ) dx1 dx2

−
∫∫ (

δX3− α,γ δXγ
)
x3=α (p̄ + ρgα) dx1 dx2,

(4.3)
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where∂� is the entire boundary surface enclosing�, and where the divergence theorem has
been applied and the dynamic boundary conditions (2.5) have been enforced. Note that the
virtual work due to the pressure has contributions only from the top and bottom boundaries.

If we now writeδW = ∫∫ δw dx1 dx2, the virtual-work density (per unit area),δw, can be
written as

δw = ρ
∫ β
α
δX · (v,t + viv,i) dx3 + (δX3− β,γ δXγ

)
x3=β (p̂ + ρgβ)

− (δX3− α,γ δXγ
)
x3=α (p̄ + ρgα),

(4.4)

where (4.2) and (4.3) were used. The principle of virtual work states that the above virtual
work is equal to zero for any divergence-free virtual displacement that satisfies (4.1).

4.2. DEPTH-INTEGRATED MOMENTUM EQUATIONS

We introduce a stream function,δ9, to define the divergence-free virtual displacement as

δX = ∇ × δ9. (4.5)

For a given divergence-free vector fieldδX, the stream function is not unique. We choose a
stream function such that it has no vertical component. It is also advantageous to introduce a
vector potential,δ8(x1, x2, x3, t) = δ8γeγ , by which the stream function is defined as

δ9(x1, x2, x3, t) = (δ82,−δ81,0
)
.

The virtual displacement can then be written as

δXγ = δ8γ

,3, δX3 = −δ8γ
,γ . (4.6)

The principle of virtual work in (4.4) can be invoked to derive a depth-integrated momen-
tum equation. Following the procedure of Kantorovich, we approximate the vector potentials
using a sequence of interpolation functions,{fn(s), n = 0,1, . . . }, which is a complete set in
the interval(−1,1). If we truncate the interpolation atn = K, we have

δ8γ (x1, x2, x3, t) = fn(s)δ8γ
n (x

1, x2, t), n = 0,1, . . . , K, (4.7)

and the virtual displacements can be written as

δXγ = 2

η
f ′n(s)δ8

γ
n , (4.8a)

δX3 = −fn(s)δ8γ
n,γ +

1

η
f ′n(s)δ8

γ
n (2ζ,γ + sη,γ ), (4.8b)

where the prime denotes differentiation with respect tos. Inserting the virtual displacements
given by (4.8a) and (4.8b) in (4.4), we obtain the virtual work per unit area follows as

δw = δ8γ
n

[
ρ

∫ 1

−1

{
f ′n(s)

Dvγ

Dt
+ f ′n(s)

(
ζ,γ + s

2
η,γ

) Dv3

Dt

}
ds+

+ρ
(∫ 1

−1
fn(s)

η

2

Dv3

Dt
ds

)
,γ

+ fn(1)(p̂ + ρgβ),γ − fn(−1)(p̄ + ρgα),γ
]
.

(4.9)
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In obtaining (4.9), we used the following identity:∫∫
δ8γ

n,γ (·) dx1 dx2 = ∮
CW
δ8

γ
nn

γ (·) dl − ∫∫ δ8γ
n (·),γ dx1 dx2

= −
∫∫

δ8γ
n(·),γ dx1 dx2

for an arbitrary scalar variable(·). The line integral is equal to zero sinceδ8γ
nn

γ = 0 on
SW , which can be shown from (4.1b) and (4.8a). The contourCW denotes the projection of
the vertical control surfaceSW onto theOx1x2 plane. Since the functionsδ8γ

n (x
1, x2, t) are

arbitrary, the principle of virtual work results in the following depth-integrated momentum
equations:

ρ

∫ 1

−1

{
f ′n(s)

Dvγ

Dt
+ f ′n(s)

(
ζ,γ + s2η,γ

) Dv3

Dt

}
ds + ρ

(
η

2

∫ 1

−1
fn(s)

Dv3

Dt
ds

)
,γ

= −fn(1)
(
p̂ + ρgβ)

,γ
+ fn(−1) (p̄ + ρgα),γ , n = 0,1, . . . , K.

(4.10)

If we particularly choosefn(s) as the same polynomial functions used by Shields and Webster
[12], i.e.,

fn(s) = sn, n = 0,1, . . . , K,

(4.9) becomes

n

∫ 1

−1
sn−1 Dvγ

Dt
ds + n

∫ 1

−1
sn−1

(
ζ,γ + s

2
η,γ

) Dv3

Dt
ds +

(
η

2

∫ 1

−1
sn

Dv3

Dt
ds

)
,γ

= −1

ρ

{(
p̂ + ρgβ)

,γ
− (−1)n (p̄ + ρgα),γ

}
, n = 0,1, . . . , K.

(4.11)

Equation (4.11) is obtainable by eliminating thepn variables from the original GN equations
given by (3.7) and (3.8).

At first glance, this formulation looks more complicated than the one given in Shields and
Webster [19]; however, there is a real difference: thepn variables, (3.11), no longer exist.

4.3. DERIVATION OF THE LEVEL IGN EQUATIONS

Now we consider the free-surface motion due to a given bottom motionα(x1, x2, t) and
surface pressure forcinĝp(x1, x2, t). To derive the Level I GN equations, we assume that
the horizontal velocity components are independent of the vertical coordinatex3 and that the
vertical component varies linearly along the verticalx3-axis. If we defineu = uγ (x1, x2, t)eγ
as the depth-independent horizontal-velocity field, the approximate velocity field, which sat-
isfies the continuity equation and the bottom boundary condition, given by (2.3) and (2.7),
respectively, can be written as

vγ = uγ (x1, x2, t), v3 = −η
2
(1+ s)∇ · u+Dα, (4.12)

where we have definedD ≡ (∂/∂t)+ u · ∇ as the material derivative in the horizontal plane.
Substituting (4.12) in the kinematic boundary condition, (2.6), on the top surface of the sheet,
we have
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∇ · u = −Dη

η
. (4.13)

Then we can write

v3 = Dζ + s
2
Dη,

and the horizontal and vertical accelerations can be obtained as

Dvγ

Dt
= Duγ ,

Dv3

Dt
= D2ζ + s

2D
2η. (4.14)

Substituting (4.14) in (4.11) and adding the two equations forn = 0 andn = 1, we obtain

Du+ ∇
{
η

2

(
D2ζ + 1

6
D2η

)}
+∇ζD2ζ + 1

12
∇ηD2η = −g∇β − ∇p̂

ρ
, (4.15)

which is the same equation derived by Miles and Salmon [18] who used Hamilton’s principle
with a Lagrangian description. We can also obtain

p̄ = ρη (D2ζ + g)+ p̂, (4.16)

after substituting (4.14) in (4.11) withn = 0, i.e., f0(s) = 1.
Substituting the relations given in (2.2) in (4.15) and (4.16), we obtain

Du+ 1

6

{∇(2β + α)D2α + ∇(4β − α)D2β + η∇(2D2β +D2α)
} = −g∇β − ∇p̂

ρ
,

and

p̄ = ρη

2

(
D2β +D2α + 2g

)+ p̂,
which are identical to (2.22)–(2.23) and (2.21), respectively, derived by Ertekin [9].

4.4. HIGHER-LEVEL EQUATIONS

The full hierarchy of approximate equations can be obtained if we represent the divergence-
free velocity vectorv(x1, x2, x3, t) by a vector potential8 = (81,82,0) such thatvγ =
δ8

γ

,3, v
3 = −δ8γ

,γ , as we did for the virtual displacement in (4.6), and expand8 using the
same interpolation functions used in (4.7):

8γ (x1, x2, x3, t) = fn(s)8γ
n (x

1, x2, x3, t), n = 0,1, . . . , K, (4.17a)

vγ = 2

η
f ′n(s)8

γ
n , (4.17b)

v3 = −fn(s)8γ
n,γ +

1

η
f ′n(s)8

γ
n (2ζ,γ + sη,γ ), (4.17b)

where the summation convention is used as usual.
The relation betweenwn(x

1, x2, t) introduced in (3.2) and the vector potential8n(x
1, x2, t)

can be obtained by comparing the expansions of the velocity vector given by (3.2) and (4.17)
with fn(s) = sn:
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wn = 2(n+ 1)

η
8n+1+ e3

{
−∇ ·8n

+2(n+ 1)

η
∇ζ ·8n+1+ n

η
∇η ·8n

}
, n = 0,1, . . . , K − 1,

(4.18)

wK =
(
−∇ ·8K + K

η
∇η ·8K

)
e3,

which obviously satisfies the continuity equation given by (3.4). If we substitute (4.18) in
(3.5) and (3.6), we obtain the kinematic boundary conditions on the top and bottom surfaces,
respectively, of the fluid sheet as

ηt + 2
K∑

n=1,3,5,...

∇ ·8n = 0, ζt + 2
K∑

n=0,2,4,...

∇ ·8n = 0. (4.19)

Note that the first equation of (4.19) can be written as

ηt +∇ ·
{
8(x1, x2, β, t)−8(x1, x2, α, t)

} = 0,

or, from the relationvγ = δ8γ

,3,

ηt +
{∫ β

α

vγ dx3

}
,γ

= 0,

which can be interpreted as the statement of mass conservation for a control volume bounded
by a vertical surface and the top and bottom surfaces of the fluid sheet.

We can also obtain the momentum equations of the GN equations (4.11) in terms of
8n(x

1, x2, t) = (81
n,8

2
n,0) by using the polynomial expansionfn(s) = sn as follows:

K∑
n=0

[
4mn

η
θm+n−28n,t −m∇ (2θm+n−1ζ + θm+nη)∇ ·8n,t − θm+n∇

(
η∇ ·8n,t

)
+2mn

η
∇ζ θm+n−2∇ζ + θm+n−1∇η) ·8n,t

+mn
η
∇η(2θm+n−2∇ζ + θm+n∇η) ·8n,t + n∇

{
(2θm+n−1∇ζ + θm+n∇η) ·8n,t

}]

+
K∑
n=0

[
−4mnη,t

η2
θm+n−28n + 2mn∇ζ

{
2θm+n−2

(∇ζ
η

)
,t

+ θm+n−1

(∇η
η

)
,t

}
·8n

+mn∇η
{

2θm+n−1

(∇ζ
η

)
,t

+ θm+n
(∇η
η

)
,t

}
·8n

+n∇
{

2θm+n−1

(∇ζ
η

)
,t

+ θm+n
(∇η
η

)
,t

}
·8n

]
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+8m
K∑
n=0

[
n

η
θm+n−281 · ∇

(
1

η
8n

)

+
K∑
r=2

rn

η
θm+n+r−3

{
8r · ∇

(
1

η
8n

)
+ n
η
µr−1
m+n−2∇ ·8r8n

}]

+m∇ζFm−1+ m
2
∇ηFm +∇

(η
2
Fm

)
= −1

ρ

{(
p̂ + ρgβ)

,γ
− (−1)m (p̄ + ρgα),γ

}
, m = 0,1, . . . , K,

(4.20)

whereFm is defined as

Fm = 4

η

K∑
n=0

[
− θm+n81 · ∇ (∇ ·8n)

+n81 · ∇
{

1

η
(2θm+n−1∇ζ + θm+n∇η) ·8n

}

+
K∑
r=2

[
− rθm+n+r−1

{
8r ·∇(∇ ·8n)+ nµr−1

m+n∇ ·8r∇ ·8n

}
+rn8r · ∇

{
1

η
(2θm+n+r−2∇ζ + θm+n+r−1∇η) ·8n

}
+rn
η
∇ ·8r

{
nθm+n+r−1µ

r−1
m+n∇η ·8n + 2(n− 1)θm+n+r−2µ

r−1
m+n−1∇ζ ·8n

} ]]
.

(4.21)

It is very important to note that the pressure integralpn, (3.11), no longer appears in the new
form of the GN equations given by (4.19) and (4.20) and that theθn variables are actually
known numbers from (3.9). Moreover, the continuity equations, (3.4), of the original GN
equations are no longer needed.

We shall show later in Section 6 that the new momentum equations of the GN equations
given by (4.20) are actually the depth-integrated vorticity transport equations. As shown by
Shields and Webster [19], the GN equations conserve vorticity in a weak sense and thus, they
are able to treat inviscid rotational flows. However, if we begin by restricting the flows to
irrotational flows, then it is possible to simplify the GN equations given by (4.19) and (4.20).
The assumption of irrotationality permits Euler’s equations to be integrated to obtain Euler’s
integral. In the context of the variational approach, the assumption of irrotationality allows
the integration of the principle of virtual work to yield Hamilton’s principle. This will be
discussed next.

5. IGN equations (Hamilton’s principle)

It has been known that Euler’s equations can be derived from Hamilton’s principle in several
ways (Herivel [21]; Serrin [22]; Lin [23]; Seliger and Whitham [24]). The derivation can be
most directly carried out in a Lagrangian description of the fluid motion. The principle can
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simply be stated as the stationary condition of the Lagrangian,L, defined as the difference
between the kinetic and potential energies. This is the principle of least action. Miles and
Salmon [18] used this principle to derive the Level I GN equations. However, the extension
of the method to a higher level has not been feasible since the transformation between the La-
grangian and Eulerian descriptions cannot easily be done unless the velocity field is as simple
as the columnar motion assumed in the Level I theory. Miles and Salmon [18] also showed that
the irrotational version of the Level I GN equations can be derived from Hamilton’s principle
written in an Eulerian framework. We will follow the latter approach to derive the irrotational
version of the GN equations.

The most general form of the Lagrangian given in an Eulerian reference frame can be found
in Lin [23]. Additional Lagrange multiplier terms are added to the Lagrangian to enforce the
continuity equation and the Lin constraint. The Lin constraint specifies the relation between
the Eulerian and Lagrangian variables and allows Hamilton’s principle to describe more gen-
eral flows. If one omits the Lin constraint, the scope of Hamilton’s principle is restricted to
irrotational flows (Bretherton [25]). We shall exploit this property to derive the irrotational
version of the GN equations.

5.1. HAMILTON ’ S PRINCIPLE FOR IRROTATIONAL FLOWS

Hamilton’s principle states that the true path of a particle makes the action integral
∫
L dt

have a stationary value for an arbitrary variation of the particle path (see,e.g.Goldstein [26
Chapter 8]). When there is a kinematic constraint on the motion of the particle, we either find
the solution among the trial solutions that satisfy the constrainta priori, or use a Lagrange
multiplier to satisfy the constraints.

The same principle can be applied to a fluid continuum. The LagrangianL is defined as
the difference between the kinetic energyT and potential energyV :

T = ρ

2

∫
�

v · v dV, V = ρg
∫
�

x3 dV = ρg

2

∫∫ (
β2− α2

)
dx1 dx2. (5.1)

When there is an external pressure on a moving boundary, we add the work done by the
pressure:

W = −
∫∫ (

p̂β − p̄α) dx1 dx2. (5.2)

The continuity equation (2.3) and the kinematic boundary conditions (2.6) and (2.7) are
treated as kinematic constraints. The continuity equation is assumed to be satisfied by a
divergence-free trial solutionv as in Section 4 and the kinematic boundary conditions are
embedded by the Lagrange multipliers. Then the Lagrangian can be written asL = T −V+W
plus the Lagrange multiplier terms:

L =
∫∫

dx1 dx2

[
ρ

2

∫ β

α

v · v dx3 − ρg
2
(β2 − α2)− (p̂β − p̄α)

+ρφ̂(β,t − v̂3+ β,t v̂γ )− ρφ̄(α,t − v̄3+ α,t v̄γ )
]
,

(5.3)

where the new scalar functionŝφ(x1, x2, t) andφ̄(x1, x2, t) are the Lagrange multipliers for
the kinematic boundary conditions on the surfacesx3 = β andx3 = α , respectively.

If we define a scalar functionφ(x1, x2, t) as an arbitrary extension ofφ̂ andφ̄ into the fluid
domain, the integrals involvinĝφ andφ̄ in (5.3) can be written as
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φ̂
(−v̂3+ β,γ v̂γ

)
dx1 dx2 −

∫∫
φ̄
(−v̄3+ α,γ v̄γ

)
dx1 dx2

= −
∫
∂�

φv · n dS = −
∫
�

v · ∇φ dV,

(5.4)

and∫∫ (
φ̂β,t − φ̄α,t

)
dx1 dx2 =

∫∫ [
d

dt

∫ β

α

φ dx3 −
∫ β

α

φ,t dx3

]
dx1 dx2. (5.5)

Substituting (5.4) and (5.5) in (5.3), we obtain another useful expression for the Lagrangian:

L =
∫∫

dx1 dx2

[
−ρ

∫ β

α

{φ,t + v · (∇φ − 1
2v)} dx3 − ρg

2

(
β2− α2)− (p̂β − p̄α)] ,

(5.6)

where the first term on the right-hand side of (5.5) is dropped since it contributes only the end
terms to the action integral

∫
L dt , and thus it will not affect the equations (derived below)

based on the principle of least action.
In taking variations on the action integral

∫
L dt , we selectively use the expressions in

(5.3) and (5.6) to simplify the derivation. Specifically, we use (5.3) to take variation ofφ and
(5.6) to take variation ofα, β andv. The corresponding variation of the action integral can be
obtained following the scheme described in Luke [4]:

δ
∫
L dt = ρ

∫∫∫
dx1 dx2 dt

[∫ β
α
δv · (v−∇φ) dx3+

+δφ̂(β,t − v̂3+ β,γ v̂γ )− δφ̄(α,t − v̄3+ α,γ v̄γ )+

+ 1
ρ
δβ
(
p∗|x3=β − p̂

)− 1
ρ
δα (p∗|x3=α − p̄)

]
.

(5.7)

Here the scalar functionp∗ = p∗ (x1, x2, x3, t
)

is defined as

p∗ ≡ −ρ{φ,t + v · (∇φ − 1
2v)+ gx3}, (5.8)

which can be written on the top and bottom boundaries as

p∗ = −ρ
{
φ̂,t + v̂γ φ̂γ − 1

2v · v+ gβ
}
, x3 = β,

p∗ = −ρ {φ̄,t + v̄γ φ̄γ − 1
2v · v+ gα} , x3 = α.

(5.9)

Sinceδv, δφ, δβ andδα are independent, (5.7) leads to the following equations:∫
�

δv · (v− ∇φ) dV = 0, (5.10)

β,t − v̂3+ β,γ v̂γ = 0, α,t − v̄3+ α,γ v̄γ = 0, (5.11)

φ̂,t + v̂γ φ̂γ − 1
2v · v+ gβ = p̂

ρ
, x3 = β,

φ̄,t + v̄γ φ̄γ − 1
2v · v+ gα = p̄

ρ
, x3 = α.

(5.12)
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If we did not put any restriction on the variationδv, (5.10) could be written asv = ∇φ. But we
assumedδv to be divergence-free. We shall discuss the implication of the weak formulation
given in (5.10) when∇ · δv = 0 later in Section 6. Before that, we shall first show how to
derive the GN equations for irrotational flows using Hamilton’s principle.

5.2. GNEQUATIONS FOR IRROTATIONAL FLOWS

Hamilton’s principle leads to a new hierarchy of approximate equations if we use the same
kinematic approximations used in obtaining the GN equations. The counterpart of the Level I
GN equations has been derived by Miles and Salmon [18] and shown to be equivalent to the
GN equations under certain conditions. We begin with the same problem to derive the new GN
equations for non-uniform depth, which was not treated by Miles and Salmon [18] explicitly.

5.2.1. Level IGN equations
We use the same kinematic approximations given by (4.2) to obtain the Lagrangian in (5.3) as
L = ρ ∫∫ Ldx1 dx2 where the Lagrangian densityL is given as

L = η

2

{
u2+ 1

3(η∇ · u)2− η∇ · uDα + (Dα)2}
+φ̂ {Dη + η∇ · u} − g

2
(β2 − α2)− 1

ρ

(
p̂β − p̄α) . (5.13)

From (5.13), the variation foru yields:

∇φ̂ = u+ 1

3η
∇(η2Dη)− 1

2η
∇(η2Dα)+Dα∇α + 1

2
Dη∇α, (5.14)

and the variation forβ yields:

φ̂,t + u · ∇φ̂ − 1

2
u2− 1

2
(Dβ)2+ gβ + p̂

ρ
= 0, (5.15)

where (4.13) is used to eliminate∇ · v. We can also derive (5.15) directly from (5.12). Note
that here we have assumedα(x1, x2, t) is a given function. However,α can be treated also as a
free surface,e.g., in the water-fall problem. In such a case, one also needs to take the variation
of the Lagrangian with respect toα to obtain the dynamic boundary condition on the bottom
free surface.

As mentioned by Miles and Salmon [18], the equations given by (5.14) and (5.15) are
equivalent to the Level I GN equations when the initial values ofu andβ are given such that the
potential vorticity,5, defined in their Equations (5.3) and (C 3b) vanishes. This requirement
is equivalent to the compatibility condition for (5.14): the potential vorticity is identical to the
curl of the right-hand side of (5.14), which should vanish to makeφ̂ exist. There are two trivial
cases in which the compatibility condition is satisfied. One is when the flow starts from rest
and the other is when the flow is two dimensional,i.e., u = u(x1, t). When the flow is two
dimensional, we can obtain (4.15) from (5.15) after differentiating it with respect tox1 and
then eliminatingφ̂ by using (5.14).

When the lower surface is flat at all times,i.e. , α = −h, whereh is the constant water
depth, and the free-surface elevation is ‘small’, we can linearize (5.14) as

∇φ̂ = u+ h
3
∇βt,
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which implies thatu is irrotational and therefore can be expressed in terms of a depth-
integrated potential.

5.2.2. Higher-level equations
The general divergence-free velocity vectorv(x1, x2, x3, t) can be written by a vector potential
8 = (81,82,0):

vγ = 8γ

,3, v3 = −8γ
,γ , (5.16)

We now use the same approximation given by (4.7):

8γ (x1, x2, t) = fn(s)8γ
n (x

1, x2, t), n = 0,1, . . . , K, (5.17a)

vγ = 2

η
f ′n(s)8

γ
n , (5.17b)

v3 = −fn(s)8γ
n,γ +

1

η
f ′n(s)8

γ
n (2ζ,γ + sη,γ ). (5.17c)

Substituting (5.17) in (5.3), we can obtain the Lagrangian densityL as

L = φ̂
(
β,t + fn(1)∇ ·8n

)− φ̄ (α,t + fn(−1)∇ ·8n

)
−η

4
Amn∇ ·8m∇ ·8n +

(
B0
mn∇ζ +

1

2
B1
mn∇η

)
·8n∇ ·8m

−1

η
C0
mn (8m ·8n +∇ζ ·8m∇ζ ·8n)

−1

η
C1
mn∇ζ ·8m∇η ·8n − 1

4η
C2
mn∇η ·8m∇η ·8n

−g
2

(
β2− α2

)− p̂
ρ
β + p̄

ρ
α,

(5.18)

where the coefficientsAmn,B0,1
mn andC0,1

mn are defined by

Amn =
∫ 1

−1
fmfn ds, Bkmn =

∫ 1

−1
skf ′mfn ds, Ckmn =

∫ 1

−1
skf ′mf

′
n ds.

The stationary condition for the action integral
∫∫∫

Ldx1 dx2 dt can be given by the Euler–
Lagrange equations (see for example, Goldstein [26, Chapter 8]). The stationary condition for
the variation of the Lagrangian, (5.18), with respect toβ andα gives the following evolution
equations forφ̂ andφ̄, respectively:



The Green-Naghdi equations for irrotational flow33

φ̂,t = −∂L
∂β
+ ∇ · ∂L

∂ (∇β)
= −1

4Amn∇ ·8m∇ ·8n − 1
2

(
B0
mn + B1

mn

)∇ · (8n∇ ·8m)

+ 1

η2
C0
mn (8m ·8n +∇ζ ·8m∇ζ ·8n)

+ 1

η2
C1
mn∇ζ ·8m∇η ·8n + 1

4η2
C2
mn∇η ·8m∇η ·8n

+1

η
C0
mn∇ · (8m∇ζ ·8n)+ 1

η
C1
mn∇ ·

{
8m

(∇ζ + 1
2∇η

) ·8n

}
− 1

2η
C2
mn∇ · (8m∇η ·8n)− gβ − p̂/ρ,

(5.19)

φ,t = ∂L

∂α
−∇ · ∂L

∂ (∇α)
= −1

4Amn∇ ·8m∇ ·8n − 1
2

(
B0
mn − B1

mn

)∇ · (8n∇ ·8m)

+ 1

η2
C0
mn (8m ·8n +∇ζ ·8m∇ζ ·8n)

+ 1

η2
C1
mn∇ζ ·8m∇η ·8n + 1

4η2
C2
mn∇η ·8m∇η ·8n

− 1

η
C0
mn∇ · (8m∇ζ ·8n)+ 1

η
C1
mn∇ ·

{
8m

(∇ζ − 1
2∇η

) ·8n

}
− 1

2η
C2
mn∇ · (8m∇η ·8n)− gα − p/ρ,

(5.20)

The stationary condition for the variation ofφ̂ andφ̄ gives the kinematic boundary condi-
tions:

β,t = −fn(1)∇ ·8n, α,t = −fn(−1)∇ ·8n. (5.21)

Note that if we particularly choosefn’s as the same polynomials used in Section 4.4, we can
show that (5.21) is equivalent to the statements of mass conservation (see (4.19)).

And finally, for the variation of8m(m = 0,1, . . . , K), we obtain a system of coupled
second-order partial differential equations to be solved for8m:
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1
2Amn∇(η∇ ·8n)+ (B0

nm∇ζ + 1
2B

1
nm∇η)∇ ·8n

−∇ {(B0
mn∇ζ + 1

2B
1
mn∇η

) ·8n

}− 2

η
C0
mn{8n +∇ζ(∇ζ ·8n)}

−1

η
C1
mn {∇ζ (∇η ·8n)+ ∇η (∇ζ ·8n)} − 1

2η
C2
mn∇η (∇η ·8n)

= fm(1)∇φ̂ − fm(−1)∇φ̄, m = 0,1, . . . , K.

(5.22)

The approximate set of equations given by (5.19)–(5.22), which we shall refer to as the
IGN equations hereafter, has a considerably simpler structure compared with the set of the
GN equations given by (4.19) and (4.20). The order of the differential equations is reduced
from three to two. The number of operations is also reduced fromO(K3) toO(K2).

Miles and Salmon [18] already showed that the equations, termed the IGN equations here,
are equivalent to the GN equations at the first level of approximation. Naturally, one may ask
whether the two equations are equivalent at the higher-level approximation. If not, one may
also ask whether the solutions of the two different sets of equations converge to the same
solutions. These will be discussed next.

6. Consequences of the variational principles

We derived the variational principles from the weak formulation of Euler’s equations given by
(2.4):

ρ
Dv
Dt
= −∇ (p + ρgx3

)
. (6.1)

In the context of the principle of virtual work, the above equation is weakly satisfied as∫
�

δX ·
{
ρ

Dv
Dt
+∇ (p + ρgx3

)}
dV = 0. (6.2)

And as shown in Section 5.1, Hamilton’s principle applied to the same problem leads to the
following weak formulation:∫

�

δX · (v−∇φ) dV = 0, (6.3)

p∗ = p̂, x3 = β, (6.4a)

p∗ = p̄, x3 = α. (6.4b)

where the scalar functionp∗ = p∗ (x1, x2, x3, t
)

is defined by (5.8).
If the virtual displacements (or the test functions)δX were chosen arbitrarily from a com-

plete set of functions, it is clear that (6.2) is equivalent to (6.1). We can also show that the
solution of (6.3) satisfies (6.1) since the scalar functionφ can be identified as the velocity
potential and (5.8) as Euler’s integral. However, in the variational principles presented here,
the test functionsδX were chosen among the divergence-free functions. One may question
whether the solutions of the variational problems still satisfy Euler’s equations with that
restriction on the test functions. We shall answer this question next.
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6.1. IMPLICATION OF THE WEAK FORMULATION

If we satisfy a vector equationr = 0 in weak sense by a test functionδX = ∇ × δ9 we have∫
�

δX · r dV =
∫
�

(∇ × δ9) · r dV

=
∫
�

δ9 · (∇ × r) dV −
∫
∂�

δ9 · (n× r) dS = 0,
(6.5)

where the divergence theorem has been applied. Since the horizontal components ofδ9 are
arbitrary,

∫
�
δX · r dV = 0 implies

eγ · (∇ × r) = 0 in �, (6.6)

sγ · r = 0 on ∂�. (6.7)

Here the vectorss1 ands2 are defined as the tangential vectors on the boundaries whose
horizontal components are parallel to thex1 andx2 axes, respectively,i.e.,

s1 = −n× e2, s2 = n× e1.

Note that only the tangential components of the original equationr = 0 are satisfied on the
boundary. In the fluid domain, the horizontal components of∇ × r are equal to zero.

We can also show that the vertical component of∇ × r is equal to zero. Consider a volume
inside a cylindrical surface which consists of an arbitrary horizontal surfaceSZ, the vertical
surfaceSW and the bottom surfaceSB which is part of the surfacex3 = α. Since∇ × r is
divergence-free, we have∫

SZ

(∇ × r) · e3 dS = −
∫
SW

(∇ × r) · n dS −
∫
SB

(∇ × r) · n dS.

The surface integral overSW vanishes from (6.6) since the normal vectors on the surfaceSW
are horizontal. Moreover, using the Stokes theorem, we have∫

SB

(∇ × r) · n dS =
∮
∂SB

r · dx =
∮
∂SB

(
rγ + α,γ r3

)
dxγ

= −
∮
∂SB

√
1+ α2

,1+ α2
,2 r · sγ dxγ = 0

from (6.7). Then the surface integral overSZ is equal to zero and so is(∇ × r) · e3 since the
surfaceSZ is arbitrary in the fluid domain. As a result, we have

∇ × r = 0 in �, (6.8)

rather thanr = 0 in the fluid domain.
Now we are ready to investigate the consequences of the weak formulations (6.2) and

(6.3). We begin with the ’exact problem’ where no approximations are made on the velocity
fields. After that, we shall consider the ‘discrete problem’ where the velocity profiles are
approximated by a finite number of interpolation functions in the vertical direction.

6.1.1. Exact problem
If we apply the above result to the principle of virtual work, withr = ρ(Dv/Dt)+∇p+ρge3,
we have
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∇ × Dv
Dt
= 0 in � (6.9a)

sγ ·
(

Dv
Dt
+ 1

ρ
∇p + ge3

)
= 0 on ∂�, (6.9b)

the latter being the vorticity transport equation in the fluid domain with the tangential compo-
nents of Euler’s equations satisfied on the boundaries. On the other hand, Hamilton’s principle,
with r = v−∇φ, gives

∇ × v = 0 in �, (6.10a)

sγ · (v−∇φ) = 0 on ∂�. (6.10b)

We have the irrotationality condition as the governing equation in the fluid domain, and the
tangential velocity components are given as the tangential gradients ofφ. Note that the value
of φ in the fluid domain does not affect the solutionv in (6.10). Only the values on the top
and bottom surfaces contribute to the solution. If we specifyφ as the solution of a Dirichlet
problem

∇2φ = 0 in �, (6.11a)

φ|x3=β = φ̂, φ|x3=α = φ̄, (6.11b)

and identifyφ as the velocity potential, (5.8) can be interpreted as Euler’s integral and the
scalar functionp∗ as the pressure in the fluid domain.

Note that the solution of Hamilton’s principle leads only to irrotational flows, whereas the
GN equations permit rotational flows. We can conclude then that the solutions of the principle
of virtual work and Hamilton’s principle converge to the same solution if the flow starts from
rest.

6.1.2. Discrete problem
Let us consider (6.5) again, and write it as∫∫

dx1 dx2

[∫ β

α

δ9 · (∇ × r) dx3 − δ9̂ · (ν̂ × r
)+ δ9̄ · (ν̄ × r)

]
= 0, (6.12)

where the vectorŝν = (ν̂1, ν̂2, ν̂3
)

andν̄ = (ν̄1, ν̄2, ν̄3
)

are defined aŝνγ = −β,γ , ν̂3 = 1 and
ν̄γ = −α,γ , ν̄3 = 1.

By substitutingδ9(x1, x2, x3, t) = fn(s)δ9n(x1, x2, x3, t) in (6.12), we can obtain∫∫
δ9n ·

[
η

2

∫ 1

−1
fn (s)∇ × r ds − fn(1)ν̂ × r̂ + fn(−1)ν̄ × r̄

]
dx1 dx2 = 0.

Sinceδ9n are arbitrary, we must have

eγ ·
[
η

2

∫ 1

−1
fn (s)∇ × r ds−

−fn(1)ν̂ × r̂ + fn(−1)ν̄ × r̄
] = 0, n = 0,1, . . . , K.

(6.13)

For the particular test functionsfn(s), which vanish ats = 1 and −1, i.e.,
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fn(−1) = fn(1) = 0, (6.14)

we have, from (6.13),

eγ ·
∫ 1

−1
fn(s) (∇ × r) ds = 0, (6.15)

which states that the horizontal components of∇ × r are weakly zero in the fluid domain.
If we apply (6.15) to (6.2) and (6.3), we have

eγ ·
∫ 1

−1
fn(s)∇ × Dv

Dt
ds = 0 (6.16)

and

eγ ·
∫ 1

−1
fn(s)∇ × v ds = 0, (6.17)

for the solution of the GN equations and IGN equations, respectively. In the IGN equations, the
vorticity is minimized in the fluid domain whereas in the GN equations the curl of acceleration
is minimized. This suggests that the two depth-integrated equations do not necessarily give the
same results, although they converge to the same solution whenK is sufficiently large as we
shall argue next.

Taking the time derivative of the IGN equations given in (6.17), we have

eγ ·
[
η

2

∫ 1

−1
fn(s)∇ × v,t ds

]
= 0.

And adding an irrotational term,12∇(v · v) = (v ·∇)v+ v× (∇ × v), to v,t , we have

eγ ·
[
η

2

∫ 1

−1
fn(s)∇ × Dv

Dt
ds

]
= eγ ·

[
η

2

∫ 1

−1
fn(s)∇ × (v×∇ × v) ds

]
. (6.18)

The right-hand side of (6.18) can be interpreted as the residuals of the GN equations when
we substitute the solution of the IGN equations in the GN equations. The residual is linearly
dependent on the vorticity which is minimized in the IGN equations and approaches to zero
as the level of approximation increases. From these results, we can deduce that the solutions
of the two approximate equations, the GN and the IGN equations, converge to the same exact
solution, if it exists and if the fluid starts from rest, although they may not give the same
solution for a particular, finite LevelK1.

6.2. CONSERVATION LAWS

Shields and Webster [19] showed that the GN equations preserve the conservation laws of
the physical model, such as the momentum, mechanical energy, and circulation. Miles and
Salmon [18] showed that the conservation laws can be inferred directly from the symmetries
of the Lagrangian of the Level I GN equations, and they described the conservation of circu-
lation alternatively as the conservation of potential vorticity. For the IGN equations, the same
conservation laws can be derived from the properties of the variational principle since the
Hamiltonian structure is preserved in the discrete system.

The conservation of energy comes from the conservation of the Hamiltonian. The La-
grangianL can be written as

1The authors are indebted to Prof. John V. Wehausen of U.C. Berkeley for bringing this point to their
attention.
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L = ρ
∫∫ (

φ̂β,t − φ̄α,t
)

dx1 dx2 −H, (6.19)

where the HamiltonianH is defined by

H = ρ
∫
�

v ·
(
∇φ − 1

2
v
)

dV + ρg
∫
�

x3 dV +
∫∫ (

p̂β − p̄α) dx1 dx2. (6.20)

If v satisfies the variational equation, the first term of the Hamiltonian can be identified as the
kinetic energy because the relation

∫
�

v · (v−∇φ) dV = 0 can be obtained from (6.3) by
substitutingδX = v. The sum of the volume integrals in (6.20) is the total mechanical energy
of the fluid and will be denoted byE. From the well-known Hamiltonian conservation law
(seee.g., Goldstein [26, Chapter 8]).

d

dt
H [v, φ, α, β, t] = ∂

∂t
H [v, φ, α, β, t],

and therefore, we have

dE

dt
+ d

dt

∫∫ (
p̂β − p̄α) dx1 dx2 =

∫∫ (
p̂,tβ − p̄,tα

)
dx1 dx2 (6.21)

or

dE

dt
= −

∫∫ (
p̂β,t − p̄α,t

)
dx1 dx2 = −

∫
∂�

pv · ndS, (6.22)

which is the statement of conservation of energy.
Since the solutions of the IGN equations satisfy the conservation of mechanical energy, the

conservation of momentum comes from the fact that the variational problem is independent
of the rigid-body translation (Green and Naghdi [10]). If we have a solution set{v, α, β},
we need to show that

{
v+ U, α + U3t, β + U3t

}
is also a solution set, which can easily be

shown by substituting it in (6.3) and (6.4) withφ replaced by

φ→ φ + U · x− 1

2
|U|2 t, (6.23)

where U = (
U1, U2, U3

)
is an arbitrary constant vector. An interesting consequence of

the above conservation laws is that, at the lowest level of approximation,K = 1, the two
variational principles, namely the principle of virtual work and Hamilton’s principle, lead to
the same solution since the GN equations can be derived solely from the conservation laws as
was shown by Green and Naghdi [10].

The conservation of circulation is realized in a slightly different way in the GN and IGN
equations. The conservation of cross-sheet and in-sheet circulations in the GN equations,
which have been previously shown by Shields and Webster [19], can be derived from [6.13)
by substitutingr = (Dv/Dt) as shown in Appendix A. In the IGN equations, the conservation
of the in-sheet and cross-sheet circulations are satisfied more strongly than they are in the
original GN equations because in the IGN equations, the moments of the in-sheet and cross-
sheet circulations are zero, whereas in the GN equations the moments of the rate of change
of circulations following the fluid particles, are zero. This can be deduced from (6.13) with
r = v.
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7. Concluding remarks

The GN equations are re-derived through the principle of virtual work and the divergence-
free virtual displacements and by satisfying the momentum equations weakly. As a result, the
integrated internal pressure variables are eliminated from the GN equations at any LevelK of
the approximation.

The GN equations for irrotational flows are derived at any LevelK by use of a restricted
Hamilton’s principle. The new set of equations, called the IGN equations, has a considerably
simpler structure compared with the original GN equations. In the GN equations given by
(4.19) and (4.20), the number of unknowns are 2K+4, including 2K+2 vector potentials8n

andα andβ, whereas in the IGN equations given by (5.19) through (5.22), there are 2K + 6
unknowns,φ̂ and φ̄ being the additional unknowns. However, the order of the differential
equations is reduced from 3 to 2 and the order of operations is reduced fromO(K3) in the GN
equations toO(K2) in the IGN equations. Moreover, it is found in Section 5.2.1 that the Level
I GN and IGN equations are identical in two dimensions, and they provide the same solution
in three dimensions if the potential vorticity is initially zero.

It is also shown that the solutions of the IGN equations converge to the same solutions of
the GN equations as the level of approximation increases. On the other hand, the conservation
of the in-sheet and cross-sheet circulations are satisfied more strongly by the IGN equations
compared with the GN equations because theK moments of the in-sheet circulation andK−1
weighed moments of the cross-sheet circulation are identically zero in the solutions of the IGN
equations.
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Appendix

WEAK CONSERVATION OF CIRCULATION

Consider a contourC0 of lengthl lying in the
(
x1, x2

)
plane as shown in Figure 2. The contour

is either closed as in Figure 2a or open as in Figure 2b. We define a length coordinate,λ, along
this contour withλ = 0 and λ= l corresponding to the end points of the contour. If the
contour is closed,λ = 0 andλ = l represent the same point. WithC0 as a generating curve,
we can define a separate contour,C(s, t), in the fluid sheet for a given value of the nondimen-
sional vertical coordinates. ThenC(s, t) can be expressed parametrically byx1(λ), x2(λ) and
x3(λ, s, t) ≡ ζ(λ, t)+ s η(λ,t)2 .



40 J. W. Kim et al.
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0C

0C l=λ

0=λ

(a) (b)

1x

2x

O

Figure 2. Definition of the contourC0.

We define0r (s) as a line integral of a vectorr = (r1, r2, r3) along the contourC(s, t):

0r (s, t) ≡
∫
C(s,t)

r · dx. (A.1)

From Stokes’ theorem on the vertical surface betweenC(s, t) andC0, we have

−
∫
C0

∫ s

−1

η

2
nC · (∇ × r) ds dλ = 0r (s, t)− 0r (−1, t)−

[∫ s

−1

η

2
r3 ds

]λ=l
λ=0

. (A.2)

We differentiate (A.2) to obtain

γr(x, t) ≡ 0′r (s, t)−
[η

2
r3
]λ=l
λ=0
= −

∫
C(s,t)

η

2
nC · (∇ × r) dλ. (A.3)

Multiplying (A.3) by fn(s); then integrating froms = −1 to 1, we obtain

−
∫ 1

−1
fn(s)γr (s, t) ds =

∫
C0

∫ 1

−1

η

2
fn(s)nc ·∇ × r ds dλ. (A.4)

WhenC0 is a closed circuit as in Figure 2a,γr(s, t) = 0′r (s, t) and the left-hand side of (A.4)
can be integrated by parts:∫ 1

−1
f ′n(s)0r (s, t) ds − fn(1)0r (1, t)+ fn(−1)0r (−1, t)

=
∫
C0

∫ 1

−1

η

2
fn(s)nc ·∇ × r ds dλ.

(A.5)

On the other hand, integrating (6.13) along the contourC0, we obtain∫
C0

∫ 1

−1
s
η

2
fn(s)nc ·∇ × r ds dλ = −fn(1)0r (1, t) + fn(−1)0r (−1, t). (A.6)

From (A.4) and (A.6), we then have∫ 1

−1
fn(s)γr (s, t) ds = 0 if fn(1) = fn(−1) = 0 (A.7)
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for any circuitC0. And from (A.5) and (A.6), we have∫ 1

−1
f ′n(s)0bf r(s, t) ds = 0 (A.8)

whenC0 is a closed circuit. When a polynomial function is chosen as the vertical interpolation
function, i.e., fn(s) = sn , n = 0,1, . . . , K, we have∫ 1

−1
sn0r (s, t) ds = 0, n = 0,1, . . . , K − 1, (A.9)

∫ 1

−1
sn(1− s2)γr (s, t) ds = 0, n = 0,1, . . . , K − 2. (A.10)

The above results in (A.9) and (A.10) can be applied to the GN equations and IGN equa-

tions by replacingr by ρ
Dv
Dt
+ ∇(p + gx3) andv− ∇φ, respectively. However,0r (s, t) and

γr (s, t) do not change if we add an arbitrary irrotational term tor , which can be shown from

(A.1) and (A.3). Therefore, we can replacer by
Dv
Dt

andv when we apply (A.9) and (A.10) to

the GN equations and IGN equations, respectively. When we substitute
Dv
Dt

, (A.9) and (A.10))

become equivalent to (4.4) and (4.10) of Shields and Webster [19], which are the statements
of weak conservation of in-sheet and cross-sheet circulations, respectively. Specifically, theK

moments of the in-sheet circulation andK−1 weighted moments of the cross-sheet circulation
are conserved in theKth Level GN equations. In the IGN equations, where we can substitute
v for r , the statement is more strongly given as theK moments of the in-sheet circulation and
theK − 1 weighted moments of the cross-sheet circulation are zero.
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